This site is 100% ad supported. Please add an exception to adblock for this site.

Calc Final

Terms

undefined, object
copy deck
(cos(x))^2
(1/2)(1+cos(2x)) OR 1-(sin(x))^2
(csc(x))^2
1+ (cot(x))^2
(sin(x))^2
(1/2)(1-cos(2x)) OR 1-(cos(x))^2
(tan(x))^2
(sec(x))^2 -1
(cot(x))^2
(csc(x))^2 -1
(sec(x))^2
1+(tan(x))^2
arc length formula
L = ~sqrt(1+(f\'(x))^2) dx
a^2 - x^2
u = sin^(-1)(x/a)
x^2 + a^2
u = tan^(-1)(x/a)
x^2 - a^2
u = sec^(-1)(x/a)
sin(2x)
2sin(x)cos(x)
cos(2x)
cos(x)^2-sin(x)^2
conditions for integrating ~(sin(x))^m(cos(x))^n dx
1. Either n or m (or both) is an odd, positive interger 2. Both m and n are non-negative even intergers
conditions for integrating ~(tan(x))^m(sec(x))^n dx
1. m is an odd, positive interger 2. n is an even, non-negative interger
Dx cos^(-1)(x)
-1/(sqrt(1-x^2))
Dx cot^(-1)(x)
-1/(1+x^2)
Dx csc^(-1)(x)
-1/(|x|sqrt(x^2)-1)
Dx sec^(-1)(x)
1/(|x|sqrt(x^2)-1)
Dx sin^(-1)(x)
1/(sqrt(1-x^2))
Dx tan^(-1)(x)
1/(1+x^2)
Integration by parts
~udv = uv - ~vdu
Separate (x^2+2)/(x^3)(x-2)^2(x^2+1) into partial fractions
(a/(x))+(b/(x^2))+(c/(x^3))+(d/(x-2))+(e/(x-2)^2)+((fx+g)/(x^2+1))
simplified integration by parts
~(polynomial)(e^x, sin(x), cos(x)) differentiate each separately, then combine crosswise, alternating between positive and negative starting with negative
Surface area of f(x) around x-axis
SA = ~2(pi)f(x)sqrt(1+(f\'(x))^2) dx (a, b on x-axis)
Surface area of f(x) around y-axis
SA = ~2(pi)(x)sqrt(1+(f\'(x))^2) dx (a, b, on x-axis)
Surface area of g(y) around x-axis
SA = ~2(pi)(y)sqrt(1+(g\'(y))^2) dy (a, b, on y-axis)
Surface area of g(y) rotated around y-axis
SA = ~2(pi)g(y)sqrt(1+(g\'(y))^2) dy (a, b on y-axis)
volume generated by revolving f(x) and g(x) around x-axis
v = ~(pi)[f(x)^2-g(x)^2] dx (a, b on x-axis)
volume generated by revolving f(x) around y-axis
v = ~2(pi)x(f(x)) dx (a, b on x-axis)
volume generated by revolving g(y) around x-axis
v = ~2(pi)y(g(y)) dx (a, b on y-axis)
volume generated by rotating f(x)around x-axis
v = ~(pi)f(x)^2 dx (a, b on x-axis)
volume generated by rotating g(y) around y-axis (dish)
v = ~(pi)g(y)^2 dy (a, b on y-axis)
~cos(kx) dx
(1/k)sin(kx) + C
~cot(x) dx
ln|sin(x)| + C OR -ln|csc(x)| + C
~csc(x) dx
-ln|csc(x) + cot(x)| + C
~sec(x) dx
ln|sec(x) + tan(x)| + C
~sin(kx) dx
(-1/k)cos(kx) + C
~tan(x) dx
-ln|cos(x)| + C OR ln|sec(x)| + C
ay\'\' + by\' + cy = 0; r[1], r[2] equal
y(x) = c[1]e^(r[1]x) + c[2]xe^(r[1]x)
ay\'\' + by\' + cy = 0; r[1], r[2] imaginary
y(x) = e^(px)*(c[1]cos(qx) + c[2]sin(qx)); p = -b/2a; q = sqrt(4ac-b^2)/2a; r = p +/- qi
ay\'\' + by\' + cy = 0; r[1], r[2] unequal
y(x) = c[1]e^(r[1]x) + c[2]e^(r[2]x)
Population Model
P\' = aP - bP^2 = kP(M-P); M is limiting population - what it approaches
Euler\'s method/Step problem
x[n+1] = x[n] + h; y[n+1] = y[n] + h*y\'; h = step
set-up for tank problem
x(t) is the amount of salt in tank 1 after time t; x\' = (gal/min input)-(gal/min output); output = (v[2])(x(t)/(V-(v[1]-v[2]))
nth degree Taylor Polynomial of f(x) at x = a
Pn(x) = nMk=0 f(k)(a) * 1/k! * (x-a)k
Remainder of nth degree Taylor Polynomial
Rn(x) = fn+1(z)/(n+1)! * (x-a)n+1
8Mk=0 ar^k
a/(1-r) if |r| (lt) 1
Alternating Series Test for Convergence
Suppose 8Mn=1 (-1)^(n+1)an is an alternating series. If 1)0(lt)a[n+1](lt)a[n] for every n, and lim a[n] = 0, then (-1)^(n+1)converges
Comparison Test - convergence
M an and M bn are positive-term series, if Mbn converges and an(lt)bn for every n, then an converges
Comparison Test - divergence
M an and M bn are positive-term series, if bn diverges and an > bn for every n, then an diverges
Comparison Test examples
p/(q+k) < p/q < (p+k)/q, try to simplify to geometric or p-series
Integral Test
8Mn=1 an, 1~8 f(x)dx = lim(t->8) 1~t f(x)dx, if 8Mn=1 an is a positive-term series and f is a continous positive-valued, decreasing (eventually) function for eacn n = 1, 2, 3, etc.
Limit Comparison Test
Suppose An and Bn are positive-term series; 1)If lim An/Bn = L with 0(lt)L(lt)8, then either both converge or both diverge 2)if lim An/Bn = 0 and Bn converges, An converges 3) If lim An/Bn = 8 and Bn diverges, then An diverges
nth Term Test for Divergence
if lim an # 0, then 8Mk=1 an diverges
Ratio Test
p = lim|An+1/An| Then An converges if p(lt)1, An diverges if p>1, and test is inconclusive if p=1
Root Test
p = lim |An|1\\\\n Then An converges if p(lt)1, An diverges if p>1, and test is inconclusive if p=1
Unit Vector
v is vector. u = v/|v| = v1/|v|, v2/|v|
Vector Cross Product
uxv= |i j k| |u1 u2 u3| |v1 v2 v3|
Dot Product of v and u
u1v1+u2v2+...
Volume of vectors
V = |a.(bxc)|

Deck Info

60

35173

permalink